Shock-induced wave propagation over porous and fractured borehole zones: theory and experiments.

نویسندگان

  • Huajun Fan
  • D M J Smeulders
چکیده

Borehole waves are strongly affected by adjacent porous zones or by fractures intersecting the borehole. A theoretical description for both porous and fracture zones is possible based on the introduction of an effective borehole fluid bulk modulus, characterizing the wave attenuation via borehole wall impedance. This impedance can be calculated for both porous and fracture zones adjacent to the borehole, thus predicting borehole wave attenuation, transmission, and reflection over such zones. A shock tube setup generates borehole tube waves that are used for porous and fracture zone characterization. A PVC sample is used to introduce and vary fractures in a cylindrical sample. Shock wave experiments show that attenuation in boreholes adjacent to porous zones can be predicted by theory. The transmittivities of a borehole tube wave over 1 and 5 mm fractures are correctly predicted, thus showing the potential of borehole wave experiments for fracture detection and characterization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Borehole Stoneley Wave Propagation across Heterogeneous and Permeable Structures

This study investigates the propagation of borehole Stoneley waves across heterogeneous and permeable structures. By modeling the structure as a zone intersecting the borehole, a simple one-dimensional theory is formulated to treat the interaction of the Stoneley wave with the structure. This is possible because the Stoneley wave is a guided wave, with no geometric spreading as it propagates al...

متن کامل

Borehole Stoneley Wave Propagation across Permeable Structures: Comparison between Theory

The attenuation of borehole Stoneley waves across a permeable structure (e.g., fractures or fracture zone) is correlated with the permeability of the structure. Using a simplified Biot theory, the structure can be modelled as a permeable porous layer intersecting the borehole. In order to study the effect of such a structure on Stoneley waves and to evaluate the theoretical model, we performed ...

متن کامل

Variational Principle and Plane Wave Propagation in Thermoelastic Medium with Double Porosity Under Lord-Shulman Theory

The present study is concerned with the variational principle and plane wave propagation in double porous thermoelastic infinite medium. Lord-Shulman theory [2] of thermoelasticity with one relaxation time has been used to investigate the problem. It is found that for two dimensional model, there exists four coupled longitudinal waves namely longitudinal wave (P), longitudinal thermal wave (T),...

متن کامل

Borehole Electroseismic Measurements in Dolomite: Identifying Fractures and Permeable Zones

Measuring the electrical field induced by a borehole Stoneley wave is a new method for characterizing a rock formation around a borehole. Our field measurements demonstrate that the Stoneley-wave-induced electrical field can be detected in sedimentary rocks (dolomite in our experiment), and that the amplitude of this electroseismic phenomenon can be used to detect isolated fractures and permeab...

متن کامل

Modeling of Low Frequency Stoneley Wave Propagation in an Irregular Borehole

This paper describes a propagator matrix formulation for the problem of the Stoneley wave propagation in an irregular borehole. This is based on a simple one-dimensional theory that is possible for the low frequency Stoneley wave, because it is a guided wave with no geometrical spreading in the borehole. The borehole and the surrounding formation are modeled by multi-layers discretized along th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of the Acoustical Society of America

دوره 134 6  شماره 

صفحات  -

تاریخ انتشار 2013